Skip to content

Module Information

Description: Backtesting Framework for Trading Strategies

RiskManagment - Class for managing risk in trading strategies.

Functions:
    - manage_portfolio_risk: Perform portfolio-level risk management and diversification analysis.
    - manage_instrument_risk: Apply risk management rules to the given orders based on portfolio-level risk and configuration settings.
    - check_risk_limits: Checks whether a given order for an instrument complies with risk limits.
    - calculate_portfolio_risk: Calculate the portfolio-level risk metric based on the proposed orders.
    - calculate_instrument_volatility: Calculate the volatility of an instrument.
    - calculate_portfolio_volatility: Calculate the portfolio-level volatility based on instrument volatilities.
    - get_historical_returns: Retrieve historical returns for the specified instrument.

Author: jpolec

Date: 27-02-2024 and 01-04-2024

Class: RiskManagement

Method: init

def __init__(
    self,
    config: Dict[str, Any]) -> dict:

Initialize the RiskManagement with the specified configuration.

Parameters:

Name Type Description
config Dict[str, Any] Configuration options for the RiskManagement.

Method: load_risk_params

def load_risk_params(
    self,
    config: Dict[str, Any]) -> pd.DataFrame: """ Create DataFrame from nested dictionaries with correct indices and handling Args: config (Dict[str, Any]) -> dict:

Create DataFrame from nested dictionaries with correct indices and handling

Parameters:

Name Type Description
config Dict[str, Any] The configuration dictionary with risk parameters.

Method: set_portfolio

def set_portfolio(
    self,
    portfolio: PortfolioOptimizer) -> dict:

Register the PortfolioOptimizer instance for the risk management calculations.

Parameters:

Name Type Description
portfolio PortfolioOptimizer The PortfolioOptimizer instance.

Method: set_pnl_tracker

def set_pnl_tracker(
    self,
    pnl_tracker: ProfitLossTracker) -> dict:

Register the ProfitLossTracker instance for the risk management calculations.add()

Parameters:

Name Type Description
pnl_tracker ProfitLossTracker The ProfitLossTracker instance.

Returns:

Type Description
None None

Method: assess_risk_management

def assess_risk_management(
    self,
    market_regime: str,
    current_date: pd.Timestamp) -> dict:

Assess the risk management strategies based on the identified market regime and current date.

Parameters:

Name Type Description
market_regime str The identified market regime ('bull', 'bear', or 'sideways').
current_date pd.Timestamp The current date for which to adapt the risk management strategies.

Method: calculate_new_holding_size

def calculate_new_holding_size(
    self,
    strategy: str,
    instrument: str,
    signal: int,
    market_data: pd.DataFrame,
    current_market_regime: str,
    ) -> dict:

Calculate new holding size for a given instrument and strategy based on risk management rules.

Explanation:
  1. risk per trade - calculate the risk per trade based on the account size and the risk percentage.

  2. instrument volatility - calculate the instrument volatility based on the ATR value.

  3. position size - calculate the position size based on the risk per trade and the instrument volatility.

  4. position change - check if the position change is below the inertia threshold.

  5. max quantity - calculate the maximum quantity based on the available cash.

  6. target position size - adjust the position size based on the signal and available cash/quantity.

Parameters:

Name Type Description
strategy str The strategy name.
instrument str The instrument symbol.
signal int The signal for the instrument (1 for buy, -1 for sell).
market_data pd.DataFrame The historical market data for the instrument.
current_market_regime str The current market regime.
|

Returns:

Type Description
float The calculated position size.

Method: adjust_transactions_with_risk_profiles

def adjust_transactions_with_risk_profiles(
    self,
    daily_transactions_dict,
    market_data,
    current_market_regime) -> dict:

Optimize the transactions based on the risk management rules and market regime.

It is checking:
  1. Stop-loss level (stop_loss_level) if the potential loss exceeds the stop-loss level.

    It works both for 'buy' and 'sell' orders by adjusting the order quantity.

  2. Volatility scaling (volatility_scaling) to adjust the order quantity based on the instrument volatility.

  3. Leverage ratio (leverage_ratio) to apply leverage to the order quantity.

  4. Maximum positions (max_positions) to limit the number of positions in the portfolio.

  5. Risk percentage (risk_percentage) to limit the risk per trade based on the account size.

  6. Maximum drawdown (max_drawdown) to limit the drawdown based on the new portfolio value.

  7. Maximum risk percentage (max_risk_percentage) to limit the risk based on the portfolio value.

  8. Liquidity risk (max_liquidity_risk) to limit the order quantity based on the average volume.

  9. Sector exposure (max_sector_exposure) to limit the sector exposure based on the portfolio value.

Parameters:

Name Type Description
daily_transactions_dict Dict[str, List[Dict[str, Any]]] A dictionary containing lists of transactions, grouped by strategy.
market_data Dict[str, pd.DataFrame] The market data for each instrument.
current_market_regime str The current market regime.

Returns:

Type Description
Dict[str, List[Dict[str, Any]]] A dictionary containing the adjusted lists of transactions, grouped by strategy.

Method: calculate_instrument_volatility

def calculate_instrument_volatility(
    self,
    instrument: str,
    market_data: pd.DataFrame) -> dict:

Calculate the volatility of an instrument based on historical data.

Parameters:

Name Type Description
instrument str The instrument symbol.
market_data pd.DataFrame The market data for the instrument.

Returns:

Type Description
float The calculated instrument volatility.

Method: calculate_potential_loss

def calculate_potential_loss(
    self,
    instrument: str,
    quantity: float,
    instrument_data: pd.DataFrame,
    current_market_regime: str) -> dict:

Calculate the potential loss for a given instrument and quantity based on the market data.

Parameters:

Name Type Description
instrument str The instrument symbol.
quantity float The order quantity.
instrument_data pd.DataFrame The market data for the instrument.
current_market_regime str The current market regime.

Returns:

Type Description
float The potential loss.

Method: calculate_new_drawdown

def calculate_new_drawdown(
    self,
    instrument: str,
    quantity: float,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Calculate the new drawdown for a given instrument and quantity based on the market data.

Parameters:

Name Type Description
instrument str The instrument symbol.
quantity float The order quantity.
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
float The new drawdown.

Method: calculate_liquidity_risk

def calculate_liquidity_risk(
    self,
    instrument: str,
    quantity: float,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Calculate the liquidity risk for a given instrument and order quantity.

Parameters:

Name Type Description
instrument str The instrument symbol.
quantity float The order quantity.
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
float The liquidity risk.

Method: calculate_sector_exposure

def calculate_sector_exposure(
    self,
    instrument: str,
    quantity: float,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Calculate the sector exposure for a given instrument and order quantity.

Parameters:

Name Type Description
instrument str The instrument symbol.
quantity float The order quantity.
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
float The sector exposure as a percentage of the portfolio value.

Method: calculate_portfolio_risk

def calculate_portfolio_risk(
    self,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Calculate the portfolio risk based on the current positions and market data.

Parameters:

Name Type Description
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
float The calculated portfolio risk.

Method: check_portfolio_risk

def check_portfolio_risk(
    self,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Check if the portfolio risk exceeds the maximum allowed risk.

Parameters:

Name Type Description
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
bool True if the portfolio risk exceeds the maximum allowed risk, False otherwise.

Method: calculate_pnl

def calculate_pnl(
    self,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Calculate the profit and loss (PnL) of the portfolio.

Parameters:

Name Type Description
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Method: calculate_kelly_criterion_position_size

def calculate_kelly_criterion_position_size(
    self,
    win_probability: float,
    win_loss_ratio: float) -> dict:

Calculate the optimal position size using the Kelly criterion.

Parameters:

Name Type Description
win_probability float The probability of a winning trade.
win_loss_ratio float The ratio of average win to average loss.

Returns:

Type Description
float The optimal position size based on the Kelly criterion.

Method: update_portfolio_metrics

def update_portfolio_metrics(
    self,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Update the portfolio metrics based on the current market data.

Parameters:

Name Type Description
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Method: manage_risk

def manage_risk(
    self,
    orders: List[Dict[str, Any]],
    market_data: Dict[str, pd.DataFrame]) -> List[Dict[str, Any]] -> List[Dict[str, Any]]: """ Manage the risk of the portfolio based on the orders and market data. Args: orders (List[Dict[str, Any]]) -> dict:

Manage the risk of the portfolio based on the orders and market data.

Parameters:

Name Type Description
orders List[Dict[str, Any]] The list of orders.
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
List[Dict[str, Any]] The updated list of orders after risk management.

Method: calculate_order_risk

def calculate_order_risk(
    self,
    instrument: str,
    quantity: float,
    market_data: Dict[str, pd.DataFrame]) -> dict:

Calculate the risk of an order.

Parameters:

Name Type Description
instrument str The instrument symbol.
quantity float The order quantity.
market_data Dict[str, pd.DataFrame] The market data for each instrument.

Returns:

Type Description
float The calculated order risk.

Method: calculate_value_at_risk

def calculate_value_at_risk(
    self,
    instrument_data: pd.DataFrame,
    confidence_level: float = 0.95,
    lookback_period: int = 252) -> dict:

Calculate the Value at Risk (VaR) for the given instrument data.

Parameters:

Name Type Description
instrument_data pd.DataFrame Historical price data for the instrument.
confidence_level float The confidence level for VaR calculation (default: 0.95).
lookback_period int The number of historical periods to consider for VaR calculation (default: 252).

Returns:

Type Description
float The calculated Value at Risk (VaR).

Method: calculate_expected_shortfall

def calculate_expected_shortfall(
    self,
    instrument_data: pd.DataFrame,
    confidence_level: float = 0.95,
    lookback_period: int = 252) -> dict:

Calculate the Expected Shortfall (ES) for the given instrument data.

Parameters:

Name Type Description
instrument_data pd.DataFrame Historical price data for the instrument.
confidence_level float The confidence level for ES calculation (default: 0.95).
lookback_period int The number of historical periods to consider for ES calculation (default: 252).

Returns:

Type Description
float The calculated Expected Shortfall (ES).

Class: UnitTests

Method: run_unit_test

def run_unit_test(
    unit_test: UnitTests) -> dict: