Module Information
Description: Equities Assets class for QuantJourney Framework
The Equities module is a crucial component of the QuantJourney Framework, specifically tailored for handling and managing equity data for quantitative analysis and algorithmic trading in hedge funds. This module emphasizes the importance of accessing a wide range of equity data, including historical and intraday market data, corporate actions, and financial news, through various data sources like EOD Historical Data, Yahoo Finance, and OANDA.
Author: jpolec
Date: 27-02-2024 and 18-03-2024
Class: Equities()
Method: get_us_securities
def get_us_securities() -> pd.DataFrame
Get a list of all US securities from EODHistoricalData.
Examples:
sec = dc.self.connectors['eod'].get_us_securities()
US Securities: Code ... Isin
0 0P0000A412 ... None
1 0P0000RX5G ... None
2 0P0001GXZ7 ... None
3 0P0001NGF5 ... None
4 A ... US00846U1016
... ... ... ...
47987 ZYME ... CA98985W1023
47988 ZYXI ... US98986M1036
47989 ZZHGF ... None
47990 ZZHGY ... None
47991 ZZZOF ... None
Returns:
Type | Description |
---|---|
pd.DataFrame |
Code, Name, Country, Exchange, Currency, Type, Isin |
Method: async_get_ticker_historical_mcap
def async_get_ticker_historical_mcap(
ticker: str,
exchange: str ="US"
) -> pd.DataFrame
Get historical market capitalization for a ticker
Examples:
mcap = await dc.equities.async_get_ticker_historical_mcap("AAPL")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
the stock ticker |
exchange |
str |
the stock exchange |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the historical market capitalization data |
Method: async_get_ticker_nearby_earnings
def async_get_ticker_nearby_earnings(
ticker: str,
exchange: str ="US"
) -> pd.DataFrame
Get nearby earnings for a ticker
Examples:
earnings = await dc.equities.async_get_ticker_nearby_earnings("AAPL")
Nearby Earnings: code report_date date ... estimate difference percent
0 AAPL.US 2023-05-04 2023-03-31 ... 1.43 0.09 6.2937
1 AAPL.US 2023-08-03 2023-06-30 ... 1.19 0.07 5.8824
2 AAPL.US 2023-11-02 2023-09-30 ... 1.39 0.07 5.0360
3 AAPL.US 2024-02-01 2023-12-31 ... 2.10 0.08 3.8095
4 AAPL.US 2024-05-02 2024-03-31 ... 1.50 NaN NaN
5 AAPL.US 2024-08-01 2024-06-30 ... NaN NaN NaN
6 AAPL.US 2024-10-31 2024-09-30 ... NaN NaN NaN
7 AAPL.US 2025-02-27 2024-12-31 ... NaN NaN NaN
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the nearby earnings data |
Method: async_get_nearby_ipos
def async_get_nearby_ipos() -> pd.DataFrame
Get nearby IPOs, i.e., Initial Public Offerings
Examples:
ipos = await dc.equities.async_get_nearby_ipos()
Returns:
Type | Description |
---|---|
pd.DataFrame |
the nearby IPOs data |
Method: async_get_nearby_splits
def async_get_nearby_splits() -> pd.DataFrame
Get nearby stock splits
Examples:
splits = await dc.equities.async_get_nearby_splits()
Nearby Splits: code split_date optionable old_shares new_shares
0 CANTABIL.BSE 2023-11-02 N 1 5
1 MOTS.US 2023-11-02 N 15 1
2 VR.CN 2023-11-02 N 3 1
3 CANTABIL.NSE 2023-11-02 N 1 5
4 VRCFD.US 2023-11-02 N 3 1
... ... ... ... ... ...
1965 3AG1.BE 2024-09-27 N 1 10
1966 9434.TSE 2024-09-27 N 1 10
1967 3AG1.STU 2024-09-27 N 1 10
1968 3AG1.F 2024-09-27 N 1 10
1969 9534.TSE 2024-09-27 N 1 5
Returns:
Type | Description |
---|---|
pd.DataFrame |
the nearby stock splits data |
Method: async_get_ticker_earnings_trend
def async_get_ticker_earnings_trend(
ticker: str,
exchange: str ="US"
) -> pd.DataFrame
Get earnings trend for a ticker, i.e., the earnings trend for the last 90 days
Examples:
trend = await dc.equities.async_get_ticker_earnings_trend("AAPL")
Earnings Trend: code AAPL.US
date 2025-09-30 00:00:00
period +1y
growth 0.0920
earningsEstimateAvg 7.1300
earningsEstimateLow 6.5100
earningsEstimateHigh 7.7000
earningsEstimateYearAgoEps 6.5300
earningsEstimateNumberOfAnalysts 39.0000
earningsEstimateGrowth 0.0920
revenueEstimateAvg 410879000000.00
revenueEstimateLow 386715000000.00
revenueEstimateHigh 436241000000.00
revenueEstimateYearAgoEps None
revenueEstimateNumberOfAnalysts 37.00
revenueEstimateGrowth 0.0650
epsTrendCurrent 7.1300
epsTrend7daysAgo 7.1300
epsTrend30daysAgo 7.1600
epsTrend60daysAgo 7.1700
epsTrend90daysAgo 7.1700
epsRevisionsUpLast7days 0.0000
epsRevisionsUpLast30days 1.0000
epsRevisionsDownLast30days 2.0000
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the earnings trend data |
Method: async_get_historical_splits
def async_get_historical_splits(
ticker: str,
exchange: str ="US"
) -> pd.DataFrame
Get historical stock splits for a ticker, i.e., the historical stock splits data
Examples:
splits = await dc.equities.async_get_historical_splits("AAPL")
Historical Splits:
date split
1987-06-16 2.000000/1.000000
2000-06-21 2.000000/1.000000
2005-02-28 2.000000/1.000000
2014-06-09 7.000000/1.000000
2020-08-31 4.000000/1.000000
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the historical stock splits data |
Method: async_get_historical_dividends
def async_get_historical_dividends(
ticker: str,
exchange: str ="US"
) -> pd.DataFrame
Get historical dividends for a ticker
Examples:
dividends = await dc.equities.async_get_historical_dividends("AAPL")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the historical dividends data |
Method: async_get_equity_news
def async_get_equity_news(
ticker: str ="",
exchange: str ="US",
tag: str ="",
period_end=datetime.now(pytz.utc
) -> pd.DataFrame
Get news for a ticker
Examples:
news = await dc.equities.async_get_equity_news("AAPL")
Equity News:
date ...
2024-04-29T09:06:00+00:00 4 Artificial Intelligence (AI) Stocks Members ... ... 0.112
2024-04-29T09:50:00+00:00 Prediction: This Will Be Warren Buffett's Seco... ... 0.105
2024-04-29T13:00:00+00:00 Here's How Much Stock Apple Repurchased in the... ... 0.156
2024-04-29T13:48:00+00:00 These Stocks Are Moving the Most Today: Tesla,... ... 0.113
2024-04-29T14:26:52+00:00 12 Under-the-Radar Stocks With Massive Upside ... ... 0.135
2024-04-29T15:58:39+00:00 US STOCKS-Wall St edges up as Tesla and Apple ... ... 0.094
2024-04-29T16:16:57+00:00 US Benchmark Equity Indexes Extend Gains in Mi... ... 0.369
2024-04-29T16:47:00+00:00 Should You Buy Apple (AAPL) Stock Ahead of Q2 ... ... 0.112
2024-04-29T17:28:23+00:00 What Would Happen If Warren Buffett Bailed On ... ... 0.144
2024-04-29T17:49:01+00:00 Tesla, Apple Help US Equity Indexes Extend Gains ... 0.576
2024-04-29T19:10:54+00:00 US STOCKS-Wall Street stocks gain as investors... ... 0.093
2024-04-29T19:13:12+00:00 Apple shares gain ground after Bernstein analy... ... 0.098
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
tag |
str |
The news tag |
period_end |
datetime |
The end date for the period |
period_days |
int |
The number of days for the period |
limit |
int |
The number of news items to fetch |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the news data |
Method: async_get_ohlcv
def async_get_ohlcv(
tickers: List[str],
exchanges: List[str],
source : str,
granularity: str = "1d",
period_starts: List[str] = None,
period_ends: List[str] = None,
db_name: Optional[str] = None,
read_from_db: bool = False,
write_to_db: bool = False
) -> List[pd.DataFrame]
Async get historical OHLCV data for stock tickers. All tickers, exchanges, and period_starts, period_ends are expected to be lists of the same length. Please note read_db and write_db are require running DB; otherwise, it will raise an error, unless set as False. You can specify different source: eod, yf, oanda, etc.
Examples:
ohlcv_data = await dc.equities.async_get_ohlcv(
tickers=["AAPL", "MSFT"],
exchanges=["US", "US"],
source="eod",
granularity="1d",
period_starts=["2023-01-01", "2023-01-01"],
period_ends=["2023-12-31", "2023-12-31"],
read_from_db=False,
write_to_db=False
)
OHLCV data: [ datetime open high ... close adj_close volume
0 2023-01-03 00:00:00+00:00 130.28 130.90 ... 125.07 124.2163 112117500
1 2023-01-04 00:00:00+00:00 126.89 128.66 ... 126.36 125.4975 89113600
2 2023-01-05 00:00:00+00:00 127.13 127.77 ... 125.02 124.1666 80962700
3 2023-01-06 00:00:00+00:00 126.01 130.29 ... 129.62 128.7352 87754700
4 2023-01-09 00:00:00+00:00 130.47 133.41 ... 130.15 129.2616 70790800
.. ... ... ... ... ... ... ...
245 2023-12-22 00:00:00+00:00 195.18 195.41 ... 193.60 193.3533 37122800
246 2023-12-26 00:00:00+00:00 193.61 193.89 ... 193.05 192.8040 28919300
247 2023-12-27 00:00:00+00:00 192.49 193.50 ... 193.15 192.9038 48087700
248 2023-12-28 00:00:00+00:00 194.14 194.66 ... 193.58 193.3333 34049900
249 2023-12-29 00:00:00+00:00 193.90 194.40 ... 192.53 192.2846 42628800
Parameters:
Name | Type | Description |
---|---|---|
tickers |
list of str |
List of stock tickers |
exchanges |
list of str |
List of stock exchanges corresponding to tickers |
source |
str |
Data source for connectors (e.g., "yf", "eod", "oanda", etc.) |
granularity |
str |
Granularity for the OHLCV data ('1d', '1h', '15m', '5m', '1m') |
period_starts |
list of str |
List of start dates for the OHLCV data |
period_ends |
list of str |
List of end dates for the OHLCV data |
db_name |
str |
Database name to read from/write to (e.g. Mongo) |
read_from_db |
bool |
Read from database |
write_to_db |
bool |
Write to database |
Returns:
Type | Description |
---|---|
List[pd.DataFrame] |
List of OHLCV DataFrames for each ticker |
Method: async_get_live_lagged_prices
def async_get_live_lagged_prices(
tickers: List[str],
exchanges: List[str],
source: str
) -> dict
Asynchronously fetches live and lagged prices for the given tickers and exchanges. You can specify different source: eod, yf, oanda, etc.
Examples:
prices = await dc.equities.async_get_live_lagged_prices(
tickers=["AAPL", "MSFT"],
exchanges=["US", "US"],
source="eod"
)
Parameters:
Name | Type | Description |
---|---|---|
tickers |
list of str |
List of stock tickers. |
exchanges |
list of str |
List of stock exchanges corresponding to tickers. |
source |
str |
Data source for connectors (e.g., "yf", "eod", "oanda", etc.). |
Returns:
Type | Description |
---|---|
dict |
dictionary containing live and lagged prices DataFrames for each ticker. |
Method: async_get_intraday_data
def async_get_intraday_data(
tickers: List[str],
exchanges: List[str],
source: str,
interval: str = "5m",
to_utc: Optional[datetime] = None,
period_days: int = 120
) -> dict
Asynchronously fetches intraday data for the given tickers and exchanges. You can specify different source: eod, yf, oanda, etc. Interval options: '1m', '5m', '15m', '30m', '1h'.
Examples:
intraday_data = await dc.equities.async_get_intraday_data(
tickers=["AAPL", "MSFT"],
exchanges=["US", "US"],
source="eod",
interval="5m",
to_utc=datetime.utcnow(),
period_days=120
)
Parameters:
Name | Type | Description |
---|---|---|
tickers |
list of str |
List of stock tickers |
exchanges |
list of str |
List of stock exchanges corresponding to tickers |
source |
str |
Data source for connectors (e.g., "yf", "eod", "oanda", etc.) |
interval |
str |
Interval for the intraday data ('1m', '5m', '15m', '30m', '1h') |
to_utc |
datetime |
End date and time in UTC. Defaults to current UTC time |
period_days |
int |
Number of days for the data period |
Returns:
Type | Description |
---|---|
dict |
dictionary containing intraday data DataFrames for each ticker. |
Method: async_get_fundamental_data
def async_get_fundamental_data(
ticker: str,
exchange: str = "US",
source: str = "eod",
statement_type: Optional[str] = None,
period: Union[str,
int,
None] = None,
specific_date: Optional[str] = None,
db_name: Optional[str] = None,
read_from_db: bool = False,
write_to_db: bool = False
) -> Union[Dict, pd.DataFrame]
Async get fundamental data (income statement, cash flow, balance sheet) for a stock ticker. Reads from the database if read_from_db is True, otherwise fetches from the data source. Writes to the database if write_to_db is True.
Examples:
fundamental_data = await dc.equities.async_get_fundamental_data("AAPL", "US", "eod", "income_statement", "y")
async_get_funamental_data("AAPL", "US", "eod", "income_statement", "y")
async_get_funamental_data("AAPL", "US", "eod", "cash_flow", "q")
async_get_funamental_data("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
statement_type |
str |
The type of fundamental data (income_statement, cash_flow, balance_sheet) |
period |
str, int |
The period for the fundamental data (e.g., 'y', 'q', 1, 4) |
specific_date |
str |
The specific date for the fundamental data |
db_name |
str |
Database name to read from/write to (e.g. Mongo) |
read_from_db |
bool |
Read from database |
write_to_db |
bool |
Write to database |
Returns:
Type | Description |
---|---|
Union[Dict, pd.DataFrame] |
the fundamental data |
Method: async_get_income_statement
def async_get_income_statement(
ticker: str,
exchange: str,
option: str = "q",
source: str = "eod"
) -> pd.DataFrame
Get income statement for a ticker.
Examples:
income_statement = await dc.equities.async_get_income_statement("AAPL", "US", "q", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
option |
str |
The period option (q - quarterly, y - yearly) |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the income statement data |
Method: async_get_balance_sheet
def async_get_balance_sheet(
ticker: str,
exchange: str,
option: str = "q",
source: str = "eod"
) -> pd.DataFrame
Get balance sheet for a ticker.
Examples:
balance_sheet = await dc.equities.async_get_balance_sheet("AAPL", "US", "q", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
option |
str |
The period option (q - quarterly, y - yearly) |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
pd.DataFrame, The balance sheet data |
Method: async_get_cash_flow
def async_get_cash_flow(
ticker: str,
exchange: str,
option: str = "q",
source: str = "eod"
) -> pd.DataFrame
Get cash flow for a ticker.
Examples:
cash_flow = await dc.equities.async_get_cash_flow("AAPL", "US", "q", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
option |
str |
The period option (q - quarterly, y - yearly) |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the cash flow data |
Method: async_get_ticker_highlights
def async_get_ticker_highlights(
ticker: str,
exchange: str,
source: str = "eod"
) -> pd.DataFrame
Get ticker highlights.
Examples:
highlights = await dc.equities.async_get_ticker_highlights("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
pd.DataFrame, The ticker highlights data |
Method: async_get_ticker_mcap
def async_get_ticker_mcap(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker market capitalization.
Examples:
mcap = await dc.equities.async_get_ticker_mcap("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker market capitalization data |
Method: async_get_ticker_ebitda
def async_get_ticker_ebitda(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker EBITDA.
Examples:
ebitda = await dc.equities.async_get_ticker_ebitda("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker EBITDA data |
Method: async_get_ticker_pe
def async_get_ticker_pe(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker PE.
Examples:
pe = await dc.equities.async_get_ticker_pe("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
pd.DataFrame, The ticker PE data |
Method: async_get_ticker_peg
def async_get_ticker_peg(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker PEG.
Examples:
peg = await dc.equities.async_get_ticker_peg("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker PEG data |
Method: async_get_ticker_book
def async_get_ticker_book(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker book.
Examples:
book = await dc.equities.async_get_ticker_book("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
pd.DataFrame, The ticker book data |
Method: async_get_ticker_div_ps
def async_get_ticker_div_ps(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker div ps.
Examples:
div_ps = await dc.equities.async_get_ticker_div_ps("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker div ps data |
Method: async_get_ticker_div_yield
def async_get_ticker_div_yield(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker div yield.
Examples:
div_yield = await dc.equities.async_get_ticker_div_yield("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker div yield data |
Method: async_get_ticker_eps
def async_get_ticker_eps(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker EPS.
Examples:
eps = await dc.equities.async_get_ticker_eps("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker EPS data |
Method: async_get_ticker_last_quarter_date
def async_get_ticker_last_quarter_date(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker last quarter date.
Examples:
last_quarter_date = await dc.equities.async_get_ticker_last_quarter_date("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
pd.DataFrame, The ticker last quarter date data |
Method: async_get_ticker_profit_margin
def async_get_ticker_profit_margin(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker profit margin.
Examples:
profit_margin = await dc.equities.async_get_ticker_profit_margin("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker profit margin data |
Method: async_get_ticker_op_marginTTM
def async_get_ticker_op_marginTTM(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker op margin TTM (Operating Margin TTM)
Examples:
op_marginTTM = await dc.equities.async_get_ticker_op_marginTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker op margin TTM data |
Method: async_get_ticker_roaTTM
def async_get_ticker_roaTTM(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker ROA TTM (Return on Assets TTM)
Examples:
roaTTM = await dc.equities.async_get_ticker_roaTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker ROA TTM data |
Method: async_get_ticker_roeTTM
def async_get_ticker_roeTTM(
ticker: str,
exchange: str,
source: str = "eod",fundamental_data=None
) -> pd.DataFrame
Get ticker ROE TTM (Return on Equity TTM)
Examples:
roeTTM = await dc.equities.async_get_ticker_roeTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker ROE TTM data |
Method: async_get_ticker_revenueTTM
def async_get_ticker_revenueTTM(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker revenue TTM
Examples:
revenueTTM = await dc.equities.async_get_ticker_revenueTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker revenue TTM data |
Method: async_get_ticker_revenue_psTTM
def async_get_ticker_revenue_psTTM(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker revenue ps TTM.
Examples:
revenue_psTTM = await dc.equities.async_get_ticker_revenue_psTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker revenue ps TTM data |
Method: async_get_ticker_qoq_rev_growth
def async_get_ticker_qoq_rev_growth(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker QoQ revenue growth.
Examples:
qoq_rev_growth = await dc.equities.async_get_ticker_qoq_rev_growth("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker QoQ revenue growth data |
Method: async_get_ticker_qoq_earnings_growth
def async_get_ticker_qoq_earnings_growth(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker QoQ earnings growth.
Examples:
qoq_earnings_growth = await dc.equities.async_get_ticker_qoq_earnings_growth("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker QoQ earnings growth data |
Method: async_get_ticker_gross_profitTTM
def async_get_ticker_gross_profitTTM(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker gross profit TTM.
Examples:
gross_profitTTM = await dc.equities.async_get_ticker_gross_profitTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker gross profit TTM data |
Method: async_get_ticker_diluted_epsTTM
def async_get_ticker_diluted_epsTTM(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker diluted EPS TTM (Earnings Per Share TTM).
Examples:
diluted_epsTTM = await dc.equities.async_get_ticker_diluted_epsTTM("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker diluted EPS TTM data |
Method: async_get_ticker_analyst_target
def async_get_ticker_analyst_target(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker analyst target.
Examples:
analyst_target = await dc.equities.async_get_ticker_analyst_target("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker analyst target data |
Method: async_get_ticker_sharestats
def async_get_ticker_sharestats(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker share stats.
Examples:
sharestats = await dc.equities.async_get_ticker_sharestats("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker share stats data |
Method: async_get_ticker_shortratio
def async_get_ticker_shortratio(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker short ratio.
Examples:
shortratio = await dc.equities.async_get_ticker_shortratio("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker short ratio data |
Method: async_get_ticker_percentinsiders
def async_get_ticker_percentinsiders(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker percent insiders.
Examples:
percentinsiders = await dc.equities.async_get_ticker_percentinsiders("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker percent insiders data |
Method: async_get_ticker_valuation
def async_get_ticker_valuation(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker valuation.
Examples:
valuation = await dc.equities.async_get_ticker_valuation("AAPL", "US", "eod")
Ticker Valuation: {'TrailingPE': 26.3297, 'ForwardPE': 26.3158, 'PriceSalesTTM': 6.778,
'PriceBookMRQ': 35.4267, 'EnterpriseValue': 2649250332672, 'EnterpriseValueRevenue': 6.8966,
'EnterpriseValueEbitda': 19.929}
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker valuation data |
Method: async_get_ticker_trailing_pe
def async_get_ticker_trailing_pe(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker trailing PE (Price to Earnings).
Examples:
trailing_pe = await dc.equities.async_get_ticker_trailing_pe("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker trailing PE data |
Method: async_get_ticker_forward_pe
def async_get_ticker_forward_pe(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker forward PE (Price to Earnings).
Examples:
forward_pe = await dc.equities.async_get_ticker_forward_pe("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker forward PE data |
Method: async_get_ticker_price_to_sales
def async_get_ticker_price_to_sales(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker price to sales.
Examples:
price_to_sales = await dc.equities.async_get_ticker_price_to_sales("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker price to sales data |
Method: async_get_ticker_price_to_book
def async_get_ticker_price_to_book(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker price to book.
Examples:
price_to_book = await dc.equities.async_get_ticker_price_to_book("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker price to book data |
Method: async_get_ticker_ev
def async_get_ticker_ev(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker enterprise value.
Examples:
ev = await dc.equities.async_get_ticker_ev("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker enterprise value data |
Method: async_get_ticker_ev_revenue
def async_get_ticker_ev_revenue(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker enterprise value to revenue.
Examples:
ev_revenue = await dc.equities.async_get_ticker_ev_revenue("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker enterprise value to revenue data |
Method: async_get_ticker_ev_ebitda
def async_get_ticker_ev_ebitda(
ticker: str,
exchange: str,
source: str = "eod",
fundamental_data=None
) -> pd.DataFrame
Get ticker enterprise value to EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization).
Examples:
ev_ebitda = await dc.equities.async_get_ticker_ev_ebitda("AAPL", "US", "eod")
Parameters:
Name | Type | Description |
---|---|---|
ticker |
str |
The stock ticker |
exchange |
str |
The stock exchange |
source |
str |
The data source (eod, yf, etc.) |
Returns:
Type | Description |
---|---|
pd.DataFrame |
the ticker enterprise value to EBITDA data |